Hi
I’m working on a python script which uses a cascaded triangular arbitrash in order to multiply money.
But so far the calculations seem to be all unsatisfying.
What I’m doing so far is fetching and filtering and interpolating the values in order to estimate the trade development:
#!/usr/bin/python import sys import os import copy import math # delays: from time import sleep # web api from Cryptsy import Api #plotting the stuff import matplotlib matplotlib.use("TkAgg") from matplotlib.pyplot import plot from matplotlib.pyplot import figure from matplotlib.pyplot import close from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg from IPython import display #numpy stuff: from numpy import delete from numpy import array from numpy import linspace from numpy import polyfit from numpy import poly1d from numpy import newaxis from numpy import ones #scipy stuff from scipy.signal import wiener from scipy.optimize import curve_fit from scipy.ndimage.filters import convolve1d from scipy.interpolate import interp1d from scipy.interpolate import InterpolatedUnivariateSpline from scipy.signal import wiener from scipy.signal import gaussian from scipy.signal import savgol_filter #sklearn from sklearn.gaussian_process import GaussianProcess from sklearn.linear_model import LinearRegression from sklearn.isotonic import IsotonicRegression from sklearn.cross_validation import cross_val_predict from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline from sklearn.utils import check_random_state #pyqt fit from pyqt_fit import npr_methods import pyqt_fit.nonparam_regression as smooth
…
x = linspace(1, len(price_array), len(price_array)) y = array(price_array) filtered_y = savgol_filter(y, window_length, savgol_filter_polyorder) k0 = smooth.NonParamRegression(x, filtered_y, method=npr_methods.LocalPolynomialKernel(q=gauss_poly_deg)) k0.fit() z = k0(x) avg_diff_number=len(x)/4 new_x=x[len(x)-avg_diff_number-1:] new_z=z[len(z)-avg_diff_number-1:] clf = LinearRegression() clf.fit(new_x[:,newaxis],new_z) tangent=clf.predict(new_x[:,newaxis]) num_different=(tangent[-1]-tangent[0])/(new_x[-1]-new_x[0])
If someone has a better idea: Please say so!
maybe The Application of Echo State Network in Stock Data
Mining” Lin et al. 2008?